AD-A2C5 911

RADC-TR-87-219
Final Technical Report
September 1988

RESEARCH ON SIGNAL PROCESSING
SUPERCOMPUTERS

Carnegie Mellon University

H. T. Kung

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

NTIC

FLECTE

-y Y

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

This report has been reviewed by the RADC Public Affairs Division (PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nationms.

RADC-TR-87-219 has been reviewed and is approved for publication.

APPROVED: W /1/ W

RICEARD N. SMITH
Project Engineer

BRUNO BEEK
Technical Director
Directorate of Communications

FOR THE COMMANDER:/// 2 Cléf ;
JAMES W. HYDE TII

Directorate of Plans & Programs

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (DCCD) Griffiss AFB NY 13441-5700. This will assist us
in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific doucment require that it be returned.

SECURITY CLA§5IFICATION %F TRIS PAGE

REPORT DOCUMENTATION PAGE s P e 188

1a. REPORT SECURITY CLASSIFICATION
| UNCLASSTFIED

7. RESTRICTIVE MARKINGS
N/A

Z§7§CURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION / AVAILABILITY OF REPORT
Approved for public release;

N/A

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

distribution unlimited.

N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

e —— T
S. MONITORING ORGANIZATION REPORT NUMBER(S)
RADC~-TR-87-~219

e " T et o
6a. NAME OF PERFORMING ORGANIZATION
Carnegie Mellon University

M —
6b. OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION

Rome Air Development Cemter (DCCD)

6c. ADORESS (City, State, and ZIP Code)
Department of Computer Science
Pittsburgh PA 15213

7b. ADDRESS (City, State, and ZIP Code)

Griffiss AFB NY 13441-5700

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

Rome Air Development Center

8b. OFFICE SYMBOL
(if applicable)

DCCD

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F30602-81-C-0206

8c. ADDRESS (City, State, and 2IP Code)

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
Griffiss AFB MY 13441-5700 ELEMENT NO. NO. NO ACCESSION NO.
611027 2305 J8 P8

R ——
11. TITLE (include Secunity Classification)

RESEARCH ON SIGNAL PROCESSING SUPERCOMPUTERS

he—————————————————
12. PERSONAL AUTHOR(S)

H. T. Kun
T73a. TYPE OF REPORT 13b. TIME COVERED T4, DATE OF REPORT (Year, Month, Day) |15. PAGE COUNT

Final _ FROM_Sep 85 70.Sep 86| Septegber 1988 22

16. SUPPLEMENTARY NOTATION

N/A

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Cmputmg
25 Q2 signal processing

A 17 04 01 systolic parallel

insights into the development o

Mellon supports these models. ~§h

-

-, -
> D L

9. ABSTRACT {Continue on reverse if necessary and identify by block number)

Signal processing is an area where the required computational bandwidth in an applicar{ion can
be unbounded. Applications such as radar, sonar and communications already call for signal
processing systems capable of delivering billions or tens of billions of operations per

second. In developing a new signal processor to meet these requirements, it is essentfal to
understand the underlying computational models.

is unclear on the computational models will likely be wasteful and unable to meet the long-
term performance goal. Fortunately, because the control in signal processing is typically
data-independent, computational models in this area can be relatively simple. Based on the
study performed under this contract, this report describes some important computational model
for parallel signal processing, and illustrates how the Warp machine developed by Carnegie

e viewpoint expressed in this report may provide some useful
the next-generation signal processing supercomputers.

An ad-hoc processor development effort that

20 OISTRIBUTION / AVAILABILITY OF ABSTRACT

f 22a. NAME OF RESPONSIBLE INOIVIDUAL
Richard N. Smith

G UNCLASSIFIED/UNLIMITED [Same As ReT [J OTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

22 TELEPHONE (include Area Code) | 22¢. OFFICE SYMBOL
(315) 330-3224 RADC (DCCD)

DO Form 1473, JUN 86

Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

Lfccession For

NTIS CPRA&I

TIC TAR
Unannsuxced 0
Ju:zification________,
By

Di§};}pgtion/
Avallability Codes
Avail and/or
Dist Special

Al

There are serious problems with current processors for high-speed signal processing. To meet speed

1. Background

requirements in real-time applications, many companies, including AT&T, GE, Honeywell, Hughes,
IBM, TRW, TI, and Westinghouse, have developed their own versions of programmable signal proces-
sors. The development of these processors has been enormously expensive, and yet they are far from
ideal. These processors are typically programmed in assembly languages, and as a result, it is extremely
difficult to develop and maintain software for them. Moreover, these machines rely heavily on custom
CPUs and special-purpose hardware to obtain their performance. It is not clear at all how these systems
can be scaled up to provide another order of magnitude improvement in performance without incurring a
huge cost.

For a contrast, consider the community of scientific computing, which also deals with computationally
demanding applications. That community enjoys access to general purpose supercomputers built by
companies such as CDC, CRAY and NEC, and even smaller companies such as Convex. It has not been
as necessary for researchers in scientific computing to build their own high-performance computers, as it
has been for professionals in high-speed signal processing. One can easily see that computing needs for
scientific computing have been more cost-effectively met than those for high-speed signal processing.

There could be many reasons for this phenomenon. High-speed signal processing machines are often
embedded in larger systems, so in this case special designs are needed to deal with various interfaces to
the extenal world. It may be also due to the fact that applications usually impose stringent power and
size limitations on signal processors. However, we believe that there are other, subtle reasons. Consider
for example the impact of programming languages being used in these two communities. The scientific
community uses FORTRAN throughout. They know very well that all they need is machines that can

execute FORTRAN code efficiently and have an effective vectorizer compiler. This goal is clearly stated,
and (despite FORTRAN being an old programming language) concentrated efforts in machine architec-
tures and Lheir implementations have been possible. The high-speed signal processing community on the
other hand has mostly been programming in assembly or lower level languages: programming ex-
periences are highly machine-dependent. Therefore, the requirements of supercomputers for signal
processing have not been clear.

To solve these problems, a fundamental way is to understand the computational models that high-
performance signal processors need to support. This is elaborated in the following section.

2. The Importance of Computational Models

When developing a new computer system, some models about the computations that the machine will
support efficiently are always in the designer’s mind. For example, a typical signal processor is op-
timized to execute data-independent inner loops for routines such as FFT, filtering and matrix multiplica-
tion. Computational models are more fundamental than architectures, because the former define the
usage patterns of the machines from which the latter are derived. Unfortunately, these models are often
not explicitly stated, because sometimes it is difficult to describe them precisely.

The importance of computational models increases for new signal processing machines that use paral-
lelism as a mechanism for achieving additional performarice. High performance execution on parallel
architecture is achieved by having the programmer or compiler organize the computation so that many
tasks can be performed concurrently. The computational models are needed to give guidance on how the
partitioning can be done, and how the communication cost between the processors can be minimized.
Without the computational models, it would be very difficult to manage the kind of complexity due to the
parallelism.

More importantly, computational models provide necessary insights about the design of high-level
programming languages to support parallel computations. The most difficult part of the design of such a
language is on the inter-processor communication, and this can be done properly only if the computa-
tional models have been clearly defined. Similarly the models give the hardware requirement to support
efficient inter-processor communication.

Rather than proposing new architectures and discussing their computational bandwidths, in the follow-
ing we give computational models for future high-performance signal processors. These models are
based on our experience in projects such as Warp and (Warp, in design of parallel algorithms such as -
systolic algorithms, and in signai and image processing applications such as the autonomous land vehicle

(ALV) navigation.

We give computational models only for parallel computers using partitioned, rather than, shared
memory. These computers are capable of delivering very high computational throughput because all of
their processors can work simultaneously on their own local memories. - Almost all of the very high-
performance, parallel signal pfocessors available today, including Warp, are machines of this kind. This,
we expect, will remain to be true in the foreseeable future.

It is well-known, however, that partitioned memory parallel computers are more difficult to program
than shared memory ones, because users will have to manage explicitly various memories present in the
system. As stated above, computational models identified in this report will help specify hardware and
software tools needed to aid the programming.

3. Some Experience at Carnegie Mellon University

High-speed signal architectures have been a focus of research at Camegie Mellon for many years. Two of
our most recent efforts in this area are the Warp and iWarp projects.

The Warp machine is a systolic array computer of linearly connected cells, each of which is a
programmable processor capable of performing 10 million floating-point operations per second (10
MFLOPS). A typical Warp array includes 10 cells, thus having a peak computation rate of 100
MFLOPS. The Warp array can be extended to include more cells to accommodate applications capable
of using the increased computational bandwidth. Warp is integrated as an attached processor into a UNIX
host system. Programs for Warp are written in a high-level language supported by an optimizing com-

piler.

The Warp system is depicted in Figure 1. The Warp array performs the computation-intensive routines
such as image processing routines or matrix operations. The interface unit handles the input/output
between the array and the host, and can generate addresses (Adr) and control signals for the Warp array.
The host supplies data to and receives results from the array. In addition, it executes those parts of the
application programs which are not mapped onto the Warp array. For example, the host may perform
decision-making processes in robot navigation or evaluate convergence criteria in iterative methods for

solving systems of linear equations.

The Warp array is a linear systolic array of identical cells called Warp cells, as shown in Figure 1. Data
flow through the array on two communication channels (X and Y). Those addresses for cells’ local
memories and control signals that are generated by the interface unit propagate down the Adr channel.

Adr

HOST

I

INTERFACE
UNIT

I(___

LHR L HP

WARP PROCESSOR ARRAY

Figure 1.

Warp system overview

The direction of the Y channel is .statically configurable. This feature is used, for example, in algorithms

that require accumulated results in the last cell to be sent back to the other cells (e.g., in back-solvers), or

require local exchange of data between adjacent cells (e.g., in some implementations of numerical relaxa-

Y

YY

AReg > Add
31 x 32 >
IR
< Mem
> 2k x 32
REs 0
e
31 x 32 77

tion methods).
XQ
—- >
512 x 32
YQ <
| >
512 x 32
Data
Mem 51 Cross
i Bar
32k x 32 |€ —&—
A A
<Literal>
A
~_ j Address|—€
<] Cross
AdrQ Bar
—] >
512 x 32

AGU

Y

Y

Figure 2. Warp cell data path

Y

The first 10-cell prototype was completed in February 1986; delivery of production machines by our
industrial partner (GE) started in April 1987. Extensive experimentation with both the prototype and

production machines has demonstrated that the Warp architecture is effective in the application domain of
robot navigation, as well as in other fields such as signal processing, scientific computation, and computer
‘vision research [2, 1, 3, 5, 6, 14]. For these applications, Warp is typically several hundred times faster
than a VAX 11/780 class computer.

Presently mounted inside of a robot vehicle called NAVLAB, Warp has been used in vehicle control to
perform road following and obstacle avoidance. We have implemented road following using color clas-
sification, obstacle avoidance using stereo vision, obstacle avoidance using a laser range-finder, and path
planning using dynamic programming. We have also implemented a significant portion (approximately
100 programs) of an image processing library on Warp (15], to support robot navigation and vision
research in general.

' Anticipating the future need for integrated Warp systems, we have been developing a chip with Intel
Corporation, called the iWarp chip, since April 1986. When it becomes operational in 1989-90, the
resulting ;Warp system is expected to represent an order of magnitude improvement in cost and perfor-
mance over the current Warp. Using tens of cells, the /Warp system will be able to deliver over a billion
floating-point operations per second.

4. Some Background on Systolic Arrays

The Warp architecture evolves from many years’ research in systolic arrays at Camegie Mellon and

elsewhere. It is therefore important to review the basic concept of systolic arrays.

4.1. Principle of Systolic Arrays

Systolic arrays are suited for ‘‘front-end processing’’ that deals with large amounts of data obtained
directly from sensors. Although processing of this kind usually requires much computing power, it is
highly regular and parallelizable. The systolic array architecture exploits this regularity and parallelism to
meet the computation requirement with low costs.

The principle of a systolic array architecture (Figure 3) is that by replacing a single processing element
(PE) with an array of processing elements, called cells, a higher computation throughput can be achieved
without increasing the input/output bandwidth with the outside world [11]. The function of the memory
is analogous to that of the heart; it ‘‘pulses’’ data through the array of cells. The crux of this approach is
to ensure that once a data item is brought out from the memory it can be used effectively at each cell it
passes while being ‘‘pumped’’ from cell to cell along the array. Being able to use each input data item a
number of times is just one of the many advantages of a systolic array. Other advantages include modular
expandability, simple and regular data and control flows, use of simple and uniform cells, efficient fault-

tolerant schemes, and elimination of global data communication. These properties are highly desirable

MEMORY

Conventional
| PE
MEMORY
systolic

pE M PE pEMY pe [pE

Figure 3. Processor architecture: conventional processor with one
processing element (PE), and systolic array processor with an array of PEs or cells

for VLSI> (Very Large Scale Integration) implementations. Indeed the advances in VLSI technology

have been a major motvation for recent interest in systolic arrays.

Systolic arrays typically call for simple and regular array interconnections between their processing
elements. Many systolic algorithms have been developed on arrays depicted in Figure 4. A bibliography
maintained at Carnegie Mellon lists more than 350 papers published in the past eight years on systolic

5

oo OoOOd

Figure 4. Typical interconnection schemes for systolic arrays

arrays.

4.2. Properties of a Systolic Array Machine
We summarize some of the typical properties of a systolic array machine.

S1. The systolic array is attached to a host, which represents the “‘outside world’’ that supplies
data and receives results to and from the array, respectively. The host may also controi the
array. This differs from a traditional ‘‘cellular automaton,'’ which is assumed to be self-
sufficient for the entire computation.

S2. The machine achieves its efficiency by a cbreful mapping of computation onto the systolic
array.

(a) The mapping requires only simple and regular inter-cell communication for the ar-
ray.

(b) Only boundary cells communicate with the outside world so the array’s external [/O
bandwidth is minimized.

This is unlike data flow computers where the mapping is done dynamically in an unpre-
dictable manner.

S3. Cells of the systolic array are optimized for inter-cell communication, so data can efficiently
flow through the array as they are being processed.

(a) Each cell has sufficient [/O bandwidth for efficient implementaton of very
fine-grain parallelism (e.g., only one or two arithmetic operations performed for
each I/O operation).

(b) Systolic communication: each cell can operate direcly on data residing at the cell’s
input queues and move computed results directly to the cell’s output queue. There-
fore it may not be necessary to store incoming or outgoing data in the cell’s local
memory.

This differs from a typical message passing, distnibuted memory parailel computer such as a
hypercube.
4.3. Why the Warp Project?
A systolic array can implement a special-purpose processor, or a programmable processor. For special-
purpose implementation, the systolic array is justifiable by a predetermined set of application tasks.
Clever systolic algorithm design and highly optimized implementation, possibly with custom-made I/O
devices, for the tasks are the name of the game. Tools for fast turnaround implementation are sometimes

important.

When implementing a programmable systolic array processor considerations span more dimen-
sionaiities, and issues are in general more complex. One must develop programming models and support,
handle the I/O with a general purpose host computer, and compete with many other programmable paral-
lel computers. It is not simple to strike a balance between competing design goals such as high perfor-
mance, low cost, and high degree of programmability; only extensive experiments will provide the neces-
sary insights.

The objective of the Warp project is to explore the design space of high-performance and yet highly
programmable systolic array machines, and prove that the resulting architecture will be cost-effective
when compared to other parailel architectures. Programmability here does not mean merely that the
hardware is flexible so that it can be reconfigured to perform a variety of tasks. We need to show that
efficient and effective programming tools can be developed on the system, and with these tools lots of
algorithms and applications can be implemented at relatively low cost.

5. Computational Modeis Supported by Warp

The current Warp systen. supports the following computational models for linear, or 1-dimensional (1D),

processor arrays:
1. pipelining;
2. data partitioning;
3. recursive computation;
4. domain decomposition;
5. divide-and-conquer;
6. multi-function pipelining.
In the following we briefly describe these models. In the discussion cells in the 1D processor array are
named as cell 1, cell 2, - - -, cell N from left to right.
5.1. Pipelining
In this model, typical of systolic processing, the algorithm is partitioned among many Warp cells, where
each cell does one stage of the processing. More precisely the computation for each output is partitioned

into a sequence of identical stages, and cell i is responsible for stage i. A characteristic of this model is
that cell i+1 uses computed results of cell i, as depicted in Figure 5.

INTERMEDIATE RESULTS

INPUT —{] L .XE—..—) SUTPUT

STAGE 1 STAGE 2 STAGE N

Figure 5. Pipeliring model
Thus during the computation cell i+1 cannot start its operation until cell i completes at least a stage of
computation. Intermediate results move from left to right, and final results emerge from the right-most
cell. The sequence of computation in computing each output is exactly the same as that for the sequential

one.

The Warp array’s high inter-cell communication bandwidth and effectiveness in handling fine-grain
parallelism make it possible to use this model. For some algorithms, this is the only method of achieving
parallelism that is possible.

A simple example of the use of pipeliningAis the solution of elliptic partial differcntial equations using
successive over-relaxation (18]. Consider the following equation:

0%u % _
$2_ + -a?z' = f(x.y).

The system is solved by repeatedly combining the current values of « on a 2-dimensional grid using the

following recurrence:

[el AU
ro_ % M) B W 23 iad T W Al 3 O
W, =(l-0)y; ;+ o n)

In the Warp implementation, each cell is responsible for one relaxation, as expressed by the above equa-

where @is a constant parameter.

tion. In raster order, each cell receives inputs from the preceding cell, performs its relaxation step, and
outputs the results to the next cell. While a cell is performing the 4% relaxation step on row i, the
preceding and next cells perform the k—1%t and &+1%* relaxation steps on rows i+2 and i-2, respectively.
Thus, in one pass of the u values through the 10-cell Warp array, the above recurrence is applied ten

times. This process is repeated, under coritrol of the external host, until convergence is achieved.

The Warp implementation of FFT also uses this pipelining model [12, 14].

5.2. Data Partitioning

In this model, data are partitioned across the cells and each output is computed entirely within a cell.
That is, the entire computation for each output is done locally at a cell. The input required by the
computation of a cell is shifted in via the cells to the left. The output produced by a cell is shifted out via
the cells to the right. This computation model is depicted by Figure 6, in which dotted arrows denote the
shift-in and shift-out paths for input and output, respectively.

INPUT swmmm—) -—1 -

| J . | eewes) CUTPUT

Figure 6. Data partitioning model
Various partitioning schemes can be used to assign computations to cells for the data partitioning com-
putation model. Most of the schemes are based on the partitioning of the input or output data set [14].

5.3. Recursive Computation

The above models involve data flowing in one direction, that is, from left to right However, bi-
directional data flows are often used for computations where previously computed results are needed to
compute future results. By flowing results that were previously computed against the flow of inter-
mediate resuits that are currendy being computed, recursive computations can be implemented. The
important feature of the recursive computation model is the presence of these bi-directional data flows
over t_he 1D array, as illustrated by Figure 7. Examples of recursive computations that have been imple-
mented on 1D arrays with bi-directional data flows include recursive filtering [10], solution of triangular
linear systems [13], and QR-decomposition [8].

INPUT ---1 : k———)- s —#_-r-) OUTPUT

Figure 7. Recursive computation model

5.4. Domain Decomposition

The domain decomposition model arises when a problem domain (such as the grid space used in a finite
difference or finite element modelling) is decomposed so that each cell handles a subdomain. This model
is like the local computation model where each output is computed entirely by a single cell. However,
once in a while bi-directional exchanges of information between neighboring cells are needed. The
exchanges of information are relatively infrequent; they occur only after cells have done a fairly large
amount of computations locally. The information exchanged between two neighboring cells involves
intermediate results computed by both cells. Figure 8 depicts the domain decomposition model. In
contrast, for the recursive computation model of Figure 7, bi-direction exchanges of information are
relatively frequent, and each right-to-left arrow carries previously computed results by the array rather

than intermediate results computed by the sending cell.

H e

Figure 8. Domain decomposition model

There are many computations that can be conveniently carried out using the domain decomposition
model. Numerical simulations of properties of a physical object, by either PDE or Monte Carlo, can be
partitioned along the physical space. A large file can be sorted on a 1D array by using the bi-directional
communication to merge sublists sorted by individual cells. The merging can be done in a manner similar
to that used in the odd-even transposition sort, involving only nearest neighbor communications [4].
Labelling of connected components in an image can be done by using the bi-directional communication to
merge labels of subimages computed by individual cells [14].

5.5. Multi-function Pipelining

A single computation may involve a series of subcomputations each executing a different function. If the
different function stages can be chained together on the 1D array, then a one-pass execution of the entire
computation would be possible. This is the basic idea of the multi-function pipelining model [6]. In this
model, the 1D array is a pipeline of several groups, each consisting of a number of cells devoted to a
different function. The number of cells in each group can be adjusted so that every group will take about
the same time, in order to maximize the pipeline throughput.

10

Figure 9 illustrates the use of the multi-function pipelining model to implement the geometry system
portion of 3-D computer graphics. The first cell performs the matrix multiplications, the next three cells
do clipping, and the last cell does the scaling operation. Three cells are devoted to clipping as it requires

more arithmetic operations than either matrix multiplication or scaling [9].

[J L) L J

GROUP 1 GROUP 2 G@UP 3
{FOR MATRIX MULT) (FOR CLIPPING) (FOR SCALING)

Figure 9. Multi-function pipelining model to implement a geometry system

The data rate and format of the input to a group may not be compatible to those of the output from the
preceding group. In this case a buffering capability is needed at either end of a group.

Figure 10 depicts another example of multi-function pipeline. This is a laser radar simulation that we
have recently implemented on Warp:

Group 1: Perform 1024-point complex FFT using 10 cells, then partition the FFT output
sequence into 30 overlapped 256-element subsequences.

Group 2: For each of the 30 256-clement subsequerice, perform the following operatiorts.
o Cell 1: Multiply each element by a complex number (weight).
e Cells 2-9: Perform 256-point complex inverse FFT.
e Cell 10: Compute the amplitude of each of the 256 outputs.

Group 3: Threshold the resulting 30x256 image using 3x3 windows.

The figure shows that all the operations in the three groups are performed in one pass on a linear array.

1024-pt 30x%256

I 4Cell cellly 4Cell 4Cell _T
1 —1 N 9 10

1024-pt FFT Lo 256-pt ppp ——— Amplitude

& &
Multiplication Thresholding

Figure 10. Radar processing on Warp

In summary, the multi-function model differs from the pipelining model described earlier in that cells
are now allowed to perform different functions. This flexibility in the usage offers the opportunity of

11

effectively using a large number of cells in a 1D array.

6. Computational Models for 2-D Arrays

This section considers 2-dimensional (2-D) processor arrays, as illustrated by Figure 11.
Figure 11. Examples of 2-D processor arrays
We have identified the following important computational models for 2-D arrays:
1. pipeline;
2. local computation;
3. recursive computation;
4. domain decomposition; and
S. divide-and-conquer.

s .

These models are straightforward extensions of the corresponding ones for 1-D arrays, and thus we will
discuss them only briefly.

It is possible to define query processing, multi-function pipeline and task queue models for 2-D arrays.
However, they do not seem to lead to more useful applications than their counterparts for 1-D arrays.

6.1. Pipeline Model for 2-D Arrays

In the pipeline model, the 2-D array is a **wide’’ pipeline where each stage may consist of more than one
cell. During the computation, cells in one stage send intermediate results, that they have computed, to
their nearest neighboring cells in the next stage. Examples are 2-D systolic arrays for matrix multiplica-
tion {13, 17] and dynamic programming [7].

6.2. Local Computation Model for 2-D Arrays

The characteristic of the local computation model is that the computation for each output is computed
entirely within a cell. An example is the matrix multiplication scheme where terms in the product matrix
are accumulated locally at individual cells.

12

6.3. Recursive Computation Model for 2-D Arrays

In the recursive computation model, previously computed results are fed back into the array to interact
with other intermediate results. An example is the LU decomposition of banded matrices [13], where
previously computed results flow back to the array in two directions to meet intermediate results that flow

in yet another direction.

6.4. Domain Decomposition Model for 2-D Arrays

Physical problems can often be decomposed naturally over a 2-D processor array. Each cell performs
computations associated with the assigned region. When one stage of the local computation is completed,
the cell communicates with its nearest neighbors to update the values on the boundary of the region.

6.5. Divide-and-conquer Model for 2-D Arrays
Both the bitonic sort and merge sort are recursive sorting methods that can be implemented on a 2-D array
(16].

7. Computational Model for Heterogeneous Machines

Figure 12 indicates various tasks involved in an ALV road following application. Tasks such as road
predictor and finder are well-suited to special-purpose machines employing, say, 1D or 2D processor
arrays. The computational models, described earlier in this report, are useful for devising computational
schemes for these individual tasks. However, to get the next level of performance we need to explore the
fact that many of the tasks such as landmark recognition and road finding can operate in parallel, possibly
on a varety of machines. In this section we discuss this task-level computational model for

heterogeneous machines.

Driven by application needs, heterogeneous parallel computers have become increasingly common, and
will represent an important trend for next-generation signal processing supercomputers. For example, the
DARPA ADRIES image anaiysis project uses a system that integrates a 16-node Butterfly and a Sym-
bolics 3670 for symbolic processing, as well as a Star 100 array processor, a Warp and a 128-node
Butterfly for numeric processing. These processors are configured around a high-bandwidth Aptec bus,
which also interfaces to a high-bandwidth disk system via a VAX 11/750.

Another example of a heterogeneous parallel computer is the current Warp machine itself. The system
has a general purpose workstation and standalone MC68020 processors, in addition to the Warp array.
Run-time software is provided to make these components work in parallel, and to handle various func-
tions of the machine. Moreover, Warp is an open system in the sense that special interfaces can be added
to the machine in the future to fulfill individual application needs. In fact, the design of interfaces to the
Butterfly machine, the Aptec bus and a high-speed digitizer has already started.

13

Dest ination from
Mission Control

Map database

Map database

Wheel motion

Obstacles

Figure 12. A task-level program for the ALV road-following

For these systems, local area networks such as Ethemet can provide the flexibility but not the required
speed. To meet the speed requirement special hardware and software means are often used. However,
the integration structures such as those used in the current Warp system or in the ADRIES system are
ad-hoc. They do not support a unified programming environment and cannot be expanded or modified
easily.

A high-performance common framework for integration purposes is crucial for open system architec-
tures as well as for exploiting task level parallelism. The framework should support efficient use of the
individual processors, and allow the user to schedule them easily.

Figure 13 depicts the configuration of a heterogeneous system. The system consists of one or more
Warp arrays, several general purpose processors, sensors, and an iWarp array when it becomes available.

In programming the heterogeneous machine, we can use existing programming methods to program the
individual processors, but we need new computational models to make the heterogeneous processors in
the system work together in parallel at the task level. In the following we describe a task-level model for
exploiting the task level parallelism.

14

Switch

//ii"\w Warp Array
P e |

¢ 0 @
Workstation

Sensors « ¢ o
(Vision, Sonar, Radar)
General-purpose
- Processor
Output devices

Figure 13. Configuration of a heterogeneous machine

An application program is viewed as a collection of coarse-grain, asynchronous, cooperating tasks, as
depicted by Figure 14,

From camera

Task4
at Warp array

Tasks
at Warp array

To display

Figure 14. Program illustration using the task-level model
A task usually depends on other tasks to provide its input data, and produces output for consumption by
yet other tasks. Input and output data queues can be used between tasks to smooth the data flow. Each

15

task executes on a single special- or general-purpose processor, $pecified by the programmer. In general,
a number of tasks within a program may execute concurrently on different processors, subject to data-

dependency constraints.

The programmer can specify an input condition to trigger the execution of a task as soon as the con-
dition is satisfied. A condition may be the minimum amount of data needed in an input queue, or the
existence of certain kind of data in the queue. For instance, a landmark recognition task can start as soon
as some distinguished sign appears in the image.

The programmer explicitly associates each task with a set of processors, any of which is capable of its
execution. It will be up to a run-time scheduler to determine the particular processor on which the
execution of the task is to be scheduled.

8. Conclusions

Computational models for 1-D and 2-D processor arrays are useful for front-end processing that deals
with data directly from the sensors. The task-level model is suited to back-end processing that deals with
reasoning. The ultimate signal processing supercomputer should be able to utilize the task-level paral-
lelism provided by the task-level model, and the fine-grain parallelism provided by the computational
models for 1-D and 2-D arrays.

16

References

1. Annaratone, M., Bitz, F., Clune, E., Kung, H. T., Maulik, P., Ribas, H., Tseng, P. and Webb, J.
Applications and Algorithm Partitioning on Warp. COMPCON Spring '87, [EEE Computer Society,
1987, pp. 272-275.

2. Annaratone, M., Amould, E., Kung, H.T. and Menzilciogiu, O. Using Warp as a Supercomputer in
Signal Processing. Proceedings of ICASSP 86, IEEE, 1986, pp. 2895-2898.

3. Annaratone, M., Bitz, F., Deutch, J., Hamey, L., Kung, H. T., Maulik, P., Ribas, H., Tseng, P. and
Webb, J. Applications Experience on Warp. Proceedings of the 1987 National Computer Conference,
AFIPS, 1987, pp. 149-158.

4. Baudet, G. and Stevenson, D. " Optimal Sorting Algorithms for Parallel Computers”. [EEE Trans-
actions on Computers C-27, 1 (January 1978), 84-87.

S. Clune, E., Crisman, J. D., Klinker, G. J., and Webb, J. A. Implementation and Performance of a
Complex Vision System on a Systolic Array Machine. Tech. Rept. CMU-RI-TR-87-16, Robotics In-
stitute, Camegie Mellon University, 1987.

6. Gross, T., Kung, H.T., Lam, M. and Webb, J. Warp as a Machine for Low-level Vision. Proceedings
of 1985 IEEE International Conference on Robotics and Automation, March, 19885, pp. 790-800.

7. Guibas, L.J., Kung, H.T. and Thompson, C.D. Direct VLSI Implementation of Combinatorial Al-
gorithms. Proceedings of Conference on Very Large Scale Integration: Architecture, Design, Fabrication,
California Institute of Technology, Jan., 1979, pp. 509-525.

8. Heller, D.E. and Ipsen, I.C.F. Systolic Networks for Orthogonal Equivalence Transformations and
Their Applications. Proceedings of Conference on Advanced Research in VLSI, Massachusetts Insutute
of Technology, Cambridge, Massachusetts, January, 1982, pp. 113-122.

9. Hsu, F.H,, Kung, H.T., Nishizawa, T. and Sussman, A. Architecture of the Link and Interconnection
Chip. Proceedings of 1985 Chapel Hill Conference on VLSI, Computer Science Department, The
University of North Carolina, May, 1985, pp. 186-195.

10. Kung, H.T. Let’s Design Algorithms for VLSI Systems. Proceedings of Conference on Very Large
Scale Integration: Architecture, Design, Fabrication, California Institute of Technology, January, 1979,
pp. 65-90. Also available as a CMU Computer Science Department technical report, September 1979..

11. Kung, H.T. "Why Systolic Architectures?”. Computer Magazine 15, 1 (Jan. 1982), 37-46.

12. Kung, H.T. Systolic Algorithms for the CMU Warp Processor. Proceedings of the Seventh Inter-
national Conference on Pattern Recognition, Intemational Association for Pattem Recognition, 1984, pp.
570-577.

13. Kung, H.T. and Leiserson, C.E. Systolic Arrays (for VLSI). Sparse Matrix Proceedings 1978,
Society for Industrial and Applied Mathematics, 1979, pp. 256-282.

14. Kung, H. T. and Webb, J. A. "Mapping Image Processing Operations onto a Linear Systolic
Machine". Distributed Computing 1, 4 (1986), 246-257.

15. Electrotechnical Laboratory. SPIDER (Subroutine Package for Image Data Enhancement and
Recognition). Joint System Development Corp., Tokyo, Japan, 1983.

16. Thompson, C.D. and Kung, H.T. "Sorting on a Mesh-Connected Parallel Computer”.
Communications of the ACM 20, 4 (April 1977), 263-271. -

17. Weiser, U. and Davis, A. A Wavefront Notation Tool for VLSI Array Design. VLSI Systems and
Computations, Computer Science Department, Camegie-Mellon University, October. 1981, pp. 276-234.

17

18. Young, D.. Iterative Solution of Large Linear Systems. Academic Press, New York, 1971,

18

Appendix:
Computational Models for Future
Signal Processing
Supercomputers
(1986 IEEE Military
Communications Conference,
October 1986)

ABSTRACT

Future supercomputers tor signal processing will exploit parallelism available at all levels
of an application. To manage the complexity duc o the parailelism, computational modcls
that define the usages of the machines must first be detined. This paper gives computational
models for finc-grain parallism ypically available in front-end processing that deals with
data directly from sensors. The paper also describes a task-level model t capture the
coarse-grain parallelism typically available in the back-cnd processing that docs rcasoning on
the data obtained by the front-end processing. These models reflect the experience Carncgie
Mecllon University has accumulated over the past several years in the development of high-
performance parallel computers for signal and image processing, and their applications.

A-iii

I. INTRODUCTION

Hizh-speed signal and image processing architectures have been o jocus ot rescarch at Car-
negic Mellon University for many years, ['wo oi our most recent ettorts i tus arca are the

Warp and iWarp projects.

Warp is a programmable systolic array machine designed by Carnegic Mellon {2]. The
machine has an arrav of 10 or more lincarly connected cells. cach capable of performing 10
million 32-bit floating-point operations per sccond (10 MFFT.OPS). A 10-cell array can
achieve a performance of 50 10 100 MFLOPS for a large varicty of signal and image process:
ing operations,

Two wire-wrap prototypes. built by Carncgic Mellon and its industrial partners—GE and
Honeywell, have been operational since spring 1986. These machines are being used inten-
sively for signal and vision processing and for scienufic computing. For these computations,
the new machines are tvpically ten to one hundred times raster than the conventional
machines we have at Carncgic Mellon. GE is under contract to build cight printed circuit -
board versions of the machine to support research in robot navigation and image analysis
where computational decmands can be cxtremely high.

Anticipating the future nced for integrated Warp systems, Carnegic Mellon and Intel
have been developing a VI.SI Warp chip, called the iWarp chip. since April 1986. This
project is supported in part by DARPA. The resulting iWarp system is expected to represent
an order of magnitude improvement in cost-performance over the current Warp. Using tens
of cells the iWarp system will be able to deliver over a biilion floating-point operations per
second.

In this paper we consider future signal -processing supercomputers that are even more
powerful than the current high-performance machines such as Warp. Rather than proposing
new architectures and discussing their computational bandwidths, we give computational
models for these supercomputers. These models are based on our experience in projects
such as Warp and iWarp. in design of parallel algorithms such as systolic algorithms, and in
signal and image processing applications such as the autonomous land vehicle (ALV) naviga-
tion. Notc that computational models arc more fundamental than architectures, because the
former define the usagc patierns of the machines from which the latter are derived.

We give computational models only for parallel computers using partitioned. rather than,
shared memory. These computers are capable of dclivering very high computational
throughput because all of their processors can work simultaneously on their own local
memories. Almost all of the very high-performance, parallel signal processors available

A-l

today. including Warp. arc muchines ot this kind. This. we eapect. will remain to be true in

the foreseeable tuture.

Itis weil-known. however, that partitioned memory parallel computers are more difficuit
to program than shared memory ones. because users will have o manage explicitly various
memaorics present in the system, Computational modcls identified in this paper will help
specify hardware and software tools needed to aid the programming.

We have identified cight major computational muodels for 1-dimensional (1-D) processor
arrays. These are presented in Section 4. A bricf discussion on the extension of these models
to 2-D processor arrays is given in Scction 5. Scction 6 describes a task-level model for
heterogeneous machines. This model can exploit the higher-level parallelism available be-
tween the various tasks of an application. Scctions 2 and 3 provide sume background
informaton on the Warp and iWarp systems.

A-2

2. OVERVIEW OF WARP

The Warp muachine has three components—the Warp processor array, or simply Warp array,
the intertace unit and the host, as depieted i Figure 1. We describe this machine only
bricfly here: more detail is available separately [2]. The Warp processor array performs the
bulk of the computation. [hie interface unit handles the input/output between the array and
the host. The host has two functions: carrying out high-level application routincs and
supplying data to the Warp processor array.

HOST
Adr
INTERFACE

UNIT
rT1-"~—"-"=-"="-"="="=-"="="°"="="="=°=°°=-7 77 - 1
1
| X — X |
[YE=NCELL 1 =ACELL 2 6= - - - €= K= CELL n =Y |
[> — ce —A > [
| |
Lo - WARP_PROCESSOR ARRAY _ _ _ _ _ J

Figure . Warp machine overview

‘The Warp processor array is a pregrammable. linear systolic array, in which all processing
elements (Warp cells) are identical. Data fiow through the array on two data paths (X and
Y). while addresses and systolic control signais travel on the Adr path (as shown in the
Figure 1). The data path of a Warp cell is depicted in Figure 2. Each ccll contains two
floating-point processors: one multiplier and one ALU [23]. These arc highly pipelined:
they each can deliver up to S MFLOPS. This performance translates to a peak processing
rate of 10 MFLOPS per cell or 100 MFLOPS for a 10-cell processor array. To ensure that
data can be supplied at the rate they are consumed, an operand register file is dedicated to
each of the arithmetic units, and a crossbar is used to support high intra-cell bandwidth.
Each input path has a queue to buffer input data. A 32K-word memory is provided for
resident and temporary data storage.

A feature that distinguishes the Warp cell from many other processors of similar com-
putation power is its high [/0 bhandwidth—an important characteristic for systolic arrays.
Each Warp cell can transfer up to 20 million words (80 Mbytes) to and from its neighboring
cells per second. (In addition, 10 million 16-bit addresses can flow from one cell to the next

A~3

Yhext

A Mox . ; YCurr

tPrev . A Tuene B 4
Jﬁ X XCurr
4 ‘L Bucue 4

XPrev

Literal from Microcode =3 n
1x8ar J Aty u_]

S

M
- . M
Adr . Reqgfle Py
Ay x
1 Adriure

4 agr
AdrPrev LQueue J 7
Figure 2. Warp cell data path

cell every sccond.) 'This high inter-cell communication bandwidth makes it possible to
trans.er large volumes of intermediate data between neighboring cells in a short time and
thus supports fine grain problem decomposition.

As address patterns are typically data-independent and common to all the cells, full
address gencration capability is factored out from the ceil architecture and provided in the
interface unit. Addresses arc generated by the interface unit and propagated from cell to cell
(together with the control signals). However, for the printed circuit board versions of the
Warp machine currently being built. each ccll will also have its own address generation unit.
In additon to generating addresses. the interface unit passes data and results between the
host and the Warp array. possibly performing some data conversion in the process.

While achieving a high computational throughput. Warp has a high dcgree of program-
mability. Each processor is a horizontal microengine: the uscr has complete control over the
various functional units. To help manage this fine-grain parallelism, an optimizing compiler
to support a high-level programming language has been developed [6]. To the application

programmer. Warp is an array of simple scquential processors, communicating
asynchronously. Based on the user's program for this abstract array. the compiler generates
code for the host, interfacc unit and Warp array automatically.

LOOVERVIEW OF IWARP

Carnczie NViellon and fntel are joindy devclopig a VISI chip. called the 1Warp chip.
implement onomtearated version of the Warp cell. The iWarp chip is a programmable

processor capable or delivering at least 16 MEFT.OPS.

This chip together with, say, a 64K-word local memory can form a powerful building-
block cell. called iWarp cell, for a varicty of processor arrays beyond the current Warp
machine. This is illustrated in Figure 3.

pr—————=)
I . .
4 D v Y -1 D
15
Next | -
4 N\ A 4 ' ' N d
)
. N | N
-
Prev’ XCurt
iWarp warp
Cell Cell
N o N
YPrev” fCure
(a) (b)

n
—_— 1Warp N . N
’ el G — - Warp 7 —
Cell
= — T\ T
— — — —
(¢} (d)

Figure 3. Processor arrays composed of iWarp cells:

(a) using the Y Next input bus to receive broadcast data: (b) using the YNext
input bus and delay elements. denoted by D'’s. to implement a new systolic pathway;
(¢) using the iWarp cell 1o implement 2-D rectangular processor arrays; and (d) using
the iWarp cell augmented by a delay element to implement hexagonal processor arrays

The iWarp cell is expected to be at least 1.6 times faster than the Warp ccll, and will have

A-S

about a 27 x 47 foutprnint comparcd to the Warp cell whose current implerentation occupics
an enure 137 x 177 wire-wrap board. [n addition. the tWarp cell wiil be able o execute

Jpplication programs originally written tor the Warp cell.

A-6

4. COMPUTATIONAL MODELS FOR 1-D) ARRAYS

We have identified cight important computational modetls for 1-dimensional (1-1) processor
arrays:

1. pipeline;

2. local computation;

3. recursive computation;

4. domain decomposition;

5. divide-and-conquer;

6. query processing;

7. multi-function pipeline; and

8. task queue.

The current Warp system supports the first four models, whereas the future iWarp system
will support all the models. In the following we describe these models, and illustrate them
by examples.

In the discussion cclls in the 1-D processor array are named as cell 1, cell 2, - - -, cell N
from left to right.

4.1. Pipeline Model for 1-D Arrays

This is the classic systolic arrav model. where each output is computed across all the cells in a
pipelined fashion. More precisely the computation for each output is partitioned into a
sequence of identical stages, and cell / is responsible for stage i. A characteristic of this
model is that cell i+ 1 uses computed results of cell i, as depicted in Figure 4.

INTERMEDIATE RESULTS

INPUT = - - =) .- -« =) ouTPUT

STAGE 1 STAGE 2 STAGE N
Figure 4. Pipeline model

Thus during the computation cell i+ 1 cannot start its operation until cell ; completes at least
a stage of computation. Intermediate results move from left to right, and final results emerge

from the right-most cell. The sequence of computation in compuung cach output is exactly

the same as that tor the sequental one.

4. L1 FFT Example

Warp implemenis the FFT using this pipeline model [13]. A n-poing FFFT, with n being a
power of 2, involves logz n stages of n/2 butterfly operations, and daw shufflings between
any two consccutive stages. The so-called constant geometry version of the FFT algorithm
allows the same data shuffling t be used for all the stages [18]. ‘This is depicted in Figure 5
with n=16. [n the figurc the butterfly operations are represented by circles, and number A
by an edge indicatcs that the result associated with the edge must be multiplied by W’

Figure 5. Constant geometry version of FFT

In the Warp array, all the butterfly operations in the i-th stage are carried out by cell i,
and results are stored to the data memory of cell i+ 1. While the data memory of cell i+ 1 is
being filied by the outputs of ccil /. cell i+ 1 can work on the butterfly operations in the
(i+1)% stage of another FFT problem. Note that every ccil accesses its memory in a
shuffled order. As the same shuffling is performed for all the stages. the interface unit can
scnd the same address stream to all the cells. In practical applications, there are often a large
number of FFTs to be processed, or there are FFT problems being continuously generated.
Thus it is possible that a new FFT problem can enter the first cell, as soon as the cell
becomes free. In this way all the celis of the systolic array can be kept busy all the time.

4.1.2. Relaxation Example

In some image processing algorithms, the input image is subject to multiple passes of the
same operation [19, 20]. This process is called relaxation, in which pass i+ 1 uses the results
of pass i. A natural way to implement relaxation on a 1-D processor array is to have cell
perform pass / and send results to cell i+ 1.

In a similar way we can implement many other iterative methods such as successive over

refaxation (SOR), Jucobi and Gauss-Scidel methods tor the solution of lincar systems of
cquations. T'hese methods have all been implemented on tie current Warp system using the
pipeline model.

4.2. Local Computation Model for 1-1) Arrays

In the local computation model, cach output is computed entircly within a ccll. That is, the
cntire computation for cach output is donc /locally at a cell. The input required by the
computation of a cell is shifted in via the cells to the left. The output produced by a cell is
shifted out via the cells to the right. The local computation model is depicted by Figure 6, in
which dotted arrows denote the shift-in and shift-out paths for input and output, respec-
tively.

INPUT « - = o) .-) - > EEERY
.- IEES] CRRED. <= <) OUTPUT

Figure 6. Local computation model

Various partitioning schemes can be used to assign computations to cells for the local com-
putation modcl. Most of the schemes are based on the partitioning of the input or output
set [16].

4.2.1. 2-D Convolution Example

Onc may implement the 2-D convolution on a 1-D array by distributing the input image
cvenly to all the cells prior to computation, and then during the computation having cells
work independently from each other using only-data local to the cells. There are many other
examples based on this local computation model using only local inputs during the computa-
tion. They include the discrete cosine transform (3] and the labelled histogram computation
(16).

4.2.2. Matrix Multiplication Example

Given matrices 4 and B, their product 4-B can be computed using the local computation
model. Prior to the computation columns of B are distributed evenly among the cells;
during the computation rows of A are passed to all the cclls, and columns of the product 4- B
are computed locally at cells [13]. This differs from the above 2-D convolution example
~ where no input is shifted into a cell during the computation.

4.2.3. Dynamic Programming Example

A dynamic programming algorithm has been implemented on Warp to find the shortest
paths for terrain images. In this program, ccll i computes row i of the output image.

A-9

However. unlike the preceding 2-1) and matrix multiplic.ation examples. cell 7 uses results of
coll =1, This yuplies that cell ¢ cannot skt ts computation ior row ¢ unul cail 1= 1 has at
least itnished some ot the computation for row /. In tact, during the computation cell 7 lags
behind cell -/ by two positions. ‘That is, while cell i computes position j of row £ cell i=1
will be computing position j+ 2 of row i=1.

Other examples of pipeline with low intercell latency include 1-D convolution and poly-
nomial evaluation at many points.

4.2.4. The Hough Transform Example

The Hough transform is a template matching algorithm originally invented to find lines in
cloud chamber photographs [10] and later generalized to find arbitrary parameterized
curves [4]. The algorithm works by mapping cach significant pixel of an image into a set of
locations in a table representing different locations in the parameter space. The mapping
takes each pixel in the image into all possible combinations of parameters gencrating curves
that pass through the image pixel.

For example, in line-finding, lines arc parameterized by two values, § and p. The line

described by a particular pair of values of these parameters is
xcosd + ysind = p.

Thus, for line finding, the Hough transform takes the (x.y) location of each significant pixel
and, over a range of § valucs. calculates the p value for this (x,3} using the formula above. It
then increments a table at location (8, p). Once the entire data set has been processed. the
wble is scanned and peaks are found. These peaks represent the most likely lines in the
image.

The time-consuming step in this algorithm is thc mapping between the image and the
parameter space. This can involve floating-point computation and must be done once for
each significant pixel in the image, which can be a good portion of the image. Also, the
parameter space searched can be quite large, depending on its dimensionality and the
granularity of the parameter search.

The Warp implementation of the Hough transform works by dividing the parameter
space into different segments to a cell's memory, then allocating cach segment to one Warp
cell. The host preprocesses the image by selecting significant pixels and sending their loca-
tions to Warp (alternatively, these pixcl locations can be generated in a pass of the image
through Warp). The location of each significant pixel is sent to every cell systolically. At
each cell, the segment of the Hough space that belongs to the cell is indexed by some set of
parameters p,.p,.....p,. The pixel location is fed into a formula with some particular value

A-10

of the first n=1 parameters and the e parameter is aencrated. Table lookup for unary
functions such as sine or cosine ¢in be used to simplifs computation of the " parameter.
{he wble element at this tocation is then inciemented. This process is repeated unul the
computation for the entire seginent belonging o the cell is completed. and then the pixel
location is sent on to the aext cell. Thus in the steady state, all the Warp cells carry out
computations simultancously for different segments. After all the significant pixels have
been sent through the Warp cell. cach cell selects its significant pcaks and sends them to the
host where the maxima of alt the peaks can be found.

Thus for this implementation cach cell works on a subset of the output. that is, the
parameter space. The entire input sct. that 1s. the set of significant pixels. is passed to every
cell during the computation. This is an example of the use of the local computation model
based on the output partitioning scheme.

4.3. Recursive Computation Model for 1-D Arrays

All the models described so far involve data flowing in one direction, that is. from left to
right. However, bi-dircctional data flows are often used for computations where previously
computed results are necded to compute future results. By flowing results that were
previously computed against the flow of intermediate results that are currently being com-
puted. recursive computations can be implemented. The important feature of the recursive
computation model is the presence of these bi-directional data flows over the 1-D array, as
illustrated by Figure 7.

INPUT = « =) > —_— -+ =) OUTPUT
.

SN I SIEERETON B 2

Figure 7. Recursive computation model

Examples of recursive computations that have been implemented on 1-D arrays with bi-
directional data flows include recursive filtering [12]), solution of triangular linear
systems [14], and QR-decomposition [9].

4.4. Domain Decomposition Model for 1-D Arrays

The domain decomposition model arises when a problem domain (such as the grid space
used in a finite difference or finite element modelling) is decomposed so that each cell
handles a subdomain. This model is like the local computation model where each output is
computed entircly by a single ccll. However, once in a while bi-directional exchanges of
information between neighboring cells are needed. The exchanges of information are rela-

uvely infrequent; they occur only after cells have done a fairly large amount of computations

locally. The intormation cxchanged between two neighboring cells involves intennediate
results computed by both cells. Igure § depicts the domam decomposition model. [n
contrast. for the recursive computation model of Figure 7, bi-direcuon exchanges of infor-
mauon are relatively frequent. and cach right-to-left arrow carrics previously computed
results by the array rather than intermediate results computed by the sending cell.

Figure 8. Domain decomposition model

There are many computations that can be conveniently carried out using the domain
decomposition modcl. Numerical simulatons of propertics of a physical object, by cither
PDE or Monte Carlo. can be partitioned along the physical space. A large file can be sorted
on a 1-D array by using the bi-directional communication to merge sublists sorted by in-
dividual cells. The merging can be done in a manner similar to that used in the odd-even
transposition sort. involving only nearest neighbor communications [S]. Labelling of con-
nected components in an image can be done by using the bi-directional communication to
merge labels of subimages computed by individual cells [16].

4.5. Divide-and-conquer Model for 1-D Arrays

(a) | --

dl | —

Figure 9. Divide-and-conquer model: (a) communications between cells that are
[-apart, and (b) communications between cells that are 2-apart

Divide-and-conquer is a fundamental technique in algorithm design [1]. Under this design
paradigm, we solve a problem by (1) partitioning it into subproblems of nearly equal size, (2)
solving all the subproblems. and (3) merging the solutions to the subproblems: this proce-
dure is applied recursively to all the subproblems. Figure 9 illustrates the divide-and-
conquer model. Each subproblem is carricd out by one cell or a set of consecutive cells.
When a (sub)problem is partitioned into subproblems or solutions to subproblems are
merged. communications between cells that are either l-apart, 2-apart, 4-apart, ---, or

N/2-part take place. The 1-apart and 2-apart communications are depicted by solid arrows

in the figure. A characteristic of the divide-and-conquer model is the presence of these
ditterent communications. This distinguishes the model rom the local computation and

domain decomposition models.

The divide-and-conquer model tor cxample can be used in sorting, and various gcometric
problems such as computing convex hulls [17].

4.6. Query Processing Model for 1-D Arrays

A 1-D array can be uscd to process queries. One way to do this is to have the database
partitioned evenly among the cells. Then queries are passed to all the cells. Every cell looks
at the arriving query and outputs its reply to the query. This is itlustrated by Figure 10.

QUERY = « « <) .- ce PN,

.o o) -) “ee) - - <) REPLY

Figure 10. Query processing model

Consider for cxample the problem of looking for a table in an image. The particular
table we are scarching for is defined as having a rectangular top, which will appear as a
parallelogram in the image. Initially. we do not know anything about the position of the
tabie, except an upper bound on the size of its bounding square in the image. After extract-
ing featurcs such as lines and edges froin the image, we partition it into regions whoses sizes
are at ieast that of the bounding square for the table. We assign cach region to a cell. To
balance the computational load between the cells. we define the regions so that there are
about the same number of features associated with each region. Regions assigned to the cells
are properly overlapped to ensure that the entirc table is contained in at lcast one region. All
the cells can work in parallel on their own regions to respond to the query:

“list all sets of four lines that form a parallelogram”.

Given the response to this query, the host can predict the position of other sides of the table,
and produce queries such as:

*“list parallel lines with a given orientation”,
to find the other sides of the table,
The query processing model requires that the cells operate asynchronously, as when

responding a query they may have to perform different amounts of computations and may
produce variable amounts of outputs.

A-13

4.7, Multi-function Pipeline Model for 1-1) Arrays

A single computation may invelve a series of subcomputations cach exceuting a different
tunction. Figure 11 illustrates various functions involved in the control of an ALV road
following algorithm [15].

R\{ Combine Edqge
" Tmage 1e
G=f color — wa”?,ng 9‘1 preserving =
l]/ comopnnent s filter
Connected| .{ Fdge . /|
J components detect é Histogram K-
Lnoose Calculate
M road —}1 center of [Host
cgues road

Figure I1. Multi-function pipeline in an ALV road following algorithm

If the different function stages can be chained together on the 1-D array, then a one-pass
exccution of the entire computation would be possible. This is the basic idea of the multi-
function pipcline model [7]. In this model, the 1-D array is a pipeline of scveral groups, each
consisting of a number of cells devoted to a different function. The number of cells in each
group can be adjusted so that every group will take about the same time, in order to max-
imize the pipceline throughput.

Figure 12 illustrates the use of the muld-function pipcline model to implement the
geometry system portion of 3-D computer graphics. The first ccll performs the matrix
multiplications. the next three cells do clipping, and the last ccll does the scaling operation.
Three cells are devoted to clipping as it requires more arithmetic operations than either
maurix multiplication or scaling [11].

INPUT = o - =) ‘ b - « =) OUTPUT
L J [o L —
GROUP 1 GROUP 2 GROUP 3
(FOR MATRIX MULT) (FOR CLIPPING) (FOR SCALING)

Figure 12, Multi-function pipeline model to implement a geometry system

The data rate and format of the input to a group may not be compatible to those of the
output from the preceding group. In this case a buffering capability is needed at either end
of a group.

A-14

In summary. the mult-function medel dilfers from the pipetine inodel described carlier
m that cells are now allowed o perform ditterent tuncuons. This tlexibility tn the usage

offers the opportunity of ettectively using a large number ot cells na 1-1) array.

4.8. Task Queuce Medel for 1-0 Arrays

For all of the preceding models, cells work together for a common task, whether they are
tightly coupled (as in the pipeline modcl) or loosely coupled (as in the domain decom-
position modcl). In contrast. the task queuc model allows difterent cclis to work on different
tasks. Morc precisely, a {ree ccll can be dynamically assigned to cxecute any task in a task
qucue maintained by the host, as depicted by Figure 13. Cells operate in a totally inde-
pendent and asynchronous manner. This would allow a 1-D array to operate like an MIMD
machine and support multiple users. Since the 170 for all the cells must go through the two
boundary cells. to make efficient use of this model there must be many tasks cach of which
will do a large amount of computations per [/0 operation.

- TASK QUEUE
TASK i+3
TASK i+2
TASK i+1
e TASK 0 TASK § s e e TASK
IR R XX ceeed 171 pes<y ouTPUT

Figure 13. Task queue model

A-15

5. COMPUTNTIONAL MODELS FOR 2-D) ARRAYS

Fhis section considers 2-dimensional (2-1) processor arrays, os illustrated by Figure 14,

Figure 14. Examples o 2-D processor arrays
We have identified the following important computational models for 2-D arrays:

1. pipeline;

2. local computation;

3. recursive computation;

4. domain decomposition; and -

3. divide-and-conquer.

These modcls are straightforward extensions of the corresponding ones for 1-D arrays, and
thus we will discuss them only briefly.

It is possible to define query processing. mulu-function pipeline and task queue models
for 2-D arrays. However, they do not scem to lead to more useful applications than their
counterparts for 1-D arrays.

5.1. Pipeline Model for 2-D Arrays

In the pipcline model, the 2-D array is a “wide” pipeline where each stage may consist of
more than one cell. During the computation, cells in onc stage send intermediate results,
that they have computed. to their nearest neighboring cells in the next stage. Examples are
2-D systolic arrays for matrix multiplication {14, 22] and dynamic programming [8].

5.2. Local Computation Model for 2-D Arrays

The characteristic of the local computation model is that the computation for each output is
computed entirely within a cell. An example is the matrix multiplication scheme where
terms in the product matrix are accumulated locally at individual cells.

A-16

3.3. Recursive Computation Model for 2-1) Arrays

In the recursive computation model, previously computed resuldts are fed back into the drray
to mteract with other intermediate resulis. An exampie is the LU decomposiion of banded
matrices [14]. where previously computed results flow back to the array in twao dircctions to

mect intermediate results that tlow i vet another direction.

34. Domiin Decomposition Model for 2-1) Arrays

Physical problems can often be decomposed naturally over a 2-1) processor array. Fach cell
peiferms computations associated with the assigned region. When one stage of the local
computation is completed, the cell communicatcs with its necarcst ncighbors to update the
values on the boundary of the region.

5.5. Divide-and-conquer Model for 2-D Arrays

Both the bitonic sort and merge sort are recursive sorting methods that can be implemented
on a 2-D array [21].

A- 17

6. COMPUTATIONAL MODEL FOR HETEROGENEOUS MACHINES

Figure 13 indicates vanous tasks imvolved inan ALY road {ollowing application. Tasks such
Js road predictor and tinder are well-suited w special-purpose machines emyploying, say, 1-D
ar 2-D processor arrays. The computational models. described carlier in this paper, are
usctul for devising computational schemes for these individual tasks, However, to get the
next Jevel of performance we need to explore the fact that many of the tasks such as
landmark recognition and coad finding can operate in parallel. possibly on a variety of
machincs. In this scction we discuss this task-level computational modcl for heterogencous

machines.
Map database \ Destination from
/__Qﬁssion Control
- Navigator

‘Road selectian
Map database

Landmark list

Road \

ﬁredi::::/)

Road

/:a:gd\
inder

\J

Recognized
road

Obst:cb
finder
Recognized road
Local path
Veh::T:\\
control

Landmark

predictor Vehicle

position
Vehicle
position Landmarks

Ka-n:mah}

Landmarks
Posim

Computatio

Vehicle motion

ﬁ‘na\r

(ranqge wheel motion

Obstacles
Figure 15. A task-level program for the ALV road-following

Figure 16 depicts the configuration of a heterogencous system. The system consists of
one or more Warp arrays, several general purpose processors, sensors, and a VLSI Warp
array when it becomes available.

In programming the heterogeneous machine, we can use existing programming mcthods
to program the individual processors. but we need new computational models to make the
heterogeneous processors in the system work together in parallel at the task level. In the

A-18

Switch

Warp Array

/
c——! | PR
Workstation | I

VLSI Warp Array

Sensors ‘ PP
(vision, Sonar, Radar)
General-purpose
- Processor
Qutput devices

Figure 16. Configuration of a heterogeneous machine
following we describe a task-level model for exploiting the task level parallelism.
An application program is viewed as a collection of coarse-grain, asynchronous, cooperat-
ing tasks, as depicted by Figure 17.

From camera

Task3

Task4
at Warp array

at Warp array -

Task6
at Warp array

To display

Figure [7. Program illustration using the task-level model

A task usually depends on other tasks to provide its input data. and produces output for

A-19

consumption by yet other tasks. Input and output data queues can be uscd between tasks to
smooth the data tlow. [ach task executes on a single special- or general-purposc processor,
specified by the programimer. [n gencral. a number of tasks within a program may exccute
concurrently on ditferent processors, subject to data-dependency constraints.

The programmer can specify an input condition to trigger the cxccution of a task as soon
as the condition is satisfied. A condition may be the minimum amount of data nceded in an
input queue, or the existence of certain kind of data in the queue. For instance, a landmark
recognition task can start as soon as somc distinguished sign appears in the image.

The programmer explicitly associates cach task with a set of processors. any of which is
capable of its execution. It will be up to a run-time scheduler to determine the particular
processor on which the execution of the task is to be scheduled.

7. CONCLUSIONS

Computational models for 1-D and 2-12 processor arrays are uscful for front-end processing
that deals with data directly from the sensors. The task-level model is suited to back-end
processing that deals with reasoning. The ultimate signal processing supercomputer should
be able to utilize the task-level parallelism provided by the task-level modcl, and the fine-
grain parallelism provided by the computational models for 1-D and 2-D arrays.

A=-21

(1]

(2]

(3]

4]

[5]

(51

M

(8]

&)

(10]

References

Aho. A., Hopcroft, J.E. and Ullman, J.D.
The Design and Analvsis of Computer Algorithms,

Addison-Wesley, Reading, Massachusetts, 1975.

Annaratone, M., Arnould, E., Gross, T., Kung, H.T., Lam, M., Menzilcioglu, O.,

Sarocky, K. and Webb, J.A.

Warp Architecture and Implementation.

In Conference Proceedings of the 13th Annual International Symposium on Computer
Architecture, pages 346-356. June, 1986.

Annaratone, M., Amould, E., Kung, H.T, and Menzilcioglu, O.
Using Warp as a Supercomputer in Signal Processing.
In Proceedings of ICASSP 86. 1EEE, 1986.

Ballard, D. H. and Brown, D.M.
Computer Vision.

Prentice-Hall, 1982.

pp. 123-3L.

Baudet, G. and Stevenson, D.
Optimal Sorting Algorithins for Parallel Computers.
IEEFE Transactions on Computers C-27(1):84-87, January, 1978..

Gross, T. and Lam, M. - -

Compilation for a High-performance Systolic Array.

In Proceedings of the SIGPLAN 86 Symposium on Compiler Construction, pages
27-38. ACM SIGPIAN, June, 1986.

Gross, T., Kung, H.T., Lam, M. and Webb, J.

Warp as a Machine for Low-level Vision.

In Proceedings of 1985 IEEE International Conference on Robotics and Automation,
pages 790-800. March, 1985.

Guibas, L.J., Kung, H.T. and Thompson, C.D.

Direct VLSI Implementation of Combinatorial Algorithms.

In Proceedings of Conference on Very Large Scale Integration: Architecture, Design,
Fabrication, pages 509-525. California Institute of Technology, January, 1979.

Heller, D.E. and Ipsen, I.C.F.

Systolic Networks for Orthogonal Equivalence Transformations and Their Applica-
tions.

In Proceedings of Conference on Advanced Research in VLSI, pages 113-122. Massa-
chusetts Institute of Technology, Cambridge, Massachusetts, January, 1982.

Hough, P. V.C.
Method and Means for Recognizing Complex Patterns.
United States Patent Number 3,069,654, December, 1962.

(11]

[12]

[13]

[14]

{15]

(16]

(17]

18]

(19]

[20]

Hsu, F.H., Kung, H.T., Nishizawa, T. and Sussman, A.

LINC: The Link and Interconnection € hip.

‘Technical Report. Carnegic-Mellon University. Computer Science Department, May,
1984,

Kung, H.T.

Let's Design A]goruhms for VI.SI Systeins.

In Proceedings of Conference on Very Large Scale Integration: Architecture, Design,
Fabrication, pages 65-90. California Institutc of Technology, January, 1979.

Also available as a CMU Computer Science Deparunent technical report. September
1979.

Kung, H.T.

Systolic Algorithms for the CMU Warp Processor.

In Proceedings of the Severth International Conference on Pattern Recognition, pages
570-577. International Association for Pattern Recognition, 1984.

Kung, H.T. and Leiserson, C.E.

Systolic Arrays (for VLSI).

In Duff, L. S. and Stewart, G. W. (cdxtors) Sparse Matrix Proceedings 1978, pages
256-282. Society for Industrial and Applied Mathematics, 1979.

Kung, H.T. and Webb, J.A.

Global Operations on the CMU Warp Machine.

In Proceedings of 1985 AIAA Computers in Aerospace V Conference, pages 209-218.
American Institute of Aeronautics and Astronautics, October, 1985.

Kung, H. T. and Webb, J. A.
Mapping Image Processing Operations onto a Linear Systolic Machine.
Distributed Computing 1, 1986.

Preparata. F.P. and Shamos, M.
Computational Geometry: In Introduction.
Springer-Verlag, New York, 198S.

Rabiner, L.R. and Gold, B.
Theory and Application of Digital Signal Processing.
Prentice-Hall, Englewood Cliffs, New Jersey, 1975.

Rosenfeld, A.

Iterative methods in image analysis.

In Proceedings of the IEEE Computer Society Conference on Pattern Recognition and
Image Processing, pages 14-18. International Association for Pattern Recognition,
1977.

Rosenfeld, A., Hummel, R. A., and Zucker, S. W.
Scene labelling by relaxation operations.
IEEE Trans. on Systems, Man, and Cybernetics SMC-6:420-433, June, 1976.

(21} Thomgpson, C.D. and Kung, H.T.
Sorting on a Mesh-Conncected Parallel Computer.
Communications of tie ACM 20(4):263-271, April, 1977.

[22] Weiser, U. and Davis, A.
A Wavefront Notation Tool for VLSI Array Design.
In Kung, H.T., Sprouii, R.F.. and Stecte, G.L., Jr. (cditors). V'LSI Systems and
Computations, pages 226-234. Computer Science Department, Carnegie-Mellon
University, Computer Science Press. Inc., October, 1981.

{231 Woo, B.. Lin, L. and Ware, F.
A High-Speed 32 Bit IEEE Floating-Point Chip Sect for Digital Signal Processing.
In Proceedings of 1984 IEEE International Conference on Acoustics. Speech and Sig-
nal Processing, pages 16.6.1-16.6.4. 1984,

A-24

8 K CE LSRR S0 OT A8 B A B D

Y

CF R R E S & H T H U F o F L F R F L A9

R
MISSION ’
of

Rome Air Development Center

RADC plans and executes researnch, development, test and
selected acquisition programs in suppont of Command,
Controf, Communications and Intelligence (C31) activities.
Technical and engineering suppornt within areas of
competence 48 provided to ESD Program Oﬁéic.u (P08} and
other ESD elements to perfonm effective acquisition of
C31 systems. The areas of technical competence include
communications, command and control, battle management
Ainfornmation processing, survelllance sensons, intelfligence
data collection and handling, solid state sciences,
electromagnetics, and propagation, and electronic
reliabllity/maintainability and compatibility.

